Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Pediatr Radiol ; 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37747582

RESUMO

This review paper presents the practical development of imaging biomarkers in the scope of the PRIMAGE (PRedictive In silico Multiscale Analytics to support cancer personalized diaGnosis and prognosis, Empowered by imaging biomarkers) project, as a noninvasive and reliable way to improve the diagnosis and prognosis in pediatric oncology. The PRIMAGE project is a European multi-center research initiative that focuses on developing medical imaging-derived artificial intelligence (AI) solutions designed to enhance overall management and decision-making for two types of pediatric cancer: neuroblastoma and diffuse intrinsic pontine glioma. To allow this, the PRIMAGE project has created an open-cloud platform that combines imaging, clinical, and molecular data together with AI models developed from this data, creating a comprehensive decision support environment for clinicians managing patients with these two cancers. In order to achieve this, a standardized data processing and analysis workflow was implemented to generate robust and reliable predictions for different clinical endpoints. Magnetic resonance (MR) image harmonization and registration was performed as part of the workflow. Subsequently, an automated tool for the detection and segmentation of tumors was trained and internally validated. The Dice similarity coefficient obtained for the independent validation dataset was 0.997, indicating compatibility with the manual segmentation variability. Following this, radiomics and deep features were extracted and correlated with clinical endpoints. Finally, reproducible and relevant imaging quantitative features were integrated with clinical and molecular data to enrich both the predictive models and a set of visual analytics tools, making the PRIMAGE platform a complete clinical decision aid system. In order to ensure the advancement of research in this field and to foster engagement with the wider research community, the PRIMAGE data repository and platform are currently being integrated into the European Federation for Cancer Images (EUCAIM), which is the largest European cancer imaging research infrastructure created to date.

2.
Cancers (Basel) ; 15(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36900410

RESUMO

OBJECTIVES: To externally validate and assess the accuracy of a previously trained fully automatic nnU-Net CNN algorithm to identify and segment primary neuroblastoma tumors in MR images in a large children cohort. METHODS: An international multicenter, multivendor imaging repository of patients with neuroblastic tumors was used to validate the performance of a trained Machine Learning (ML) tool to identify and delineate primary neuroblastoma tumors. The dataset was heterogeneous and completely independent from the one used to train and tune the model, consisting of 300 children with neuroblastic tumors having 535 MR T2-weighted sequences (486 sequences at diagnosis and 49 after finalization of the first phase of chemotherapy). The automatic segmentation algorithm was based on a nnU-Net architecture developed within the PRIMAGE project. For comparison, the segmentation masks were manually edited by an expert radiologist, and the time for the manual editing was recorded. Different overlaps and spatial metrics were calculated to compare both masks. RESULTS: The median Dice Similarity Coefficient (DSC) was high 0.997; 0.944-1.000 (median; Q1-Q3). In 18 MR sequences (6%), the net was not able neither to identify nor segment the tumor. No differences were found regarding the MR magnetic field, type of T2 sequence, or tumor location. No significant differences in the performance of the net were found in patients with an MR performed after chemotherapy. The time for visual inspection of the generated masks was 7.9 ± 7.5 (mean ± Standard Deviation (SD)) seconds. Those cases where manual editing was needed (136 masks) required 124 ± 120 s. CONCLUSIONS: The automatic CNN was able to locate and segment the primary tumor on the T2-weighted images in 94% of cases. There was an extremely high agreement between the automatic tool and the manually edited masks. This is the first study to validate an automatic segmentation model for neuroblastic tumor identification and segmentation with body MR images. The semi-automatic approach with minor manual editing of the deep learning segmentation increases the radiologist's confidence in the solution with a minor workload for the radiologist.

3.
Cancers (Basel) ; 14(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35954314

RESUMO

Tumor segmentation is one of the key steps in imaging processing. The goals of this study were to assess the inter-observer variability in manual segmentation of neuroblastic tumors and to analyze whether the state-of-the-art deep learning architecture nnU-Net can provide a robust solution to detect and segment tumors on MR images. A retrospective multicenter study of 132 patients with neuroblastic tumors was performed. Dice Similarity Coefficient (DSC) and Area Under the Receiver Operating Characteristic Curve (AUC ROC) were used to compare segmentation sets. Two more metrics were elaborated to understand the direction of the errors: the modified version of False Positive (FPRm) and False Negative (FNR) rates. Two radiologists manually segmented 46 tumors and a comparative study was performed. nnU-Net was trained-tuned with 106 cases divided into five balanced folds to perform cross-validation. The five resulting models were used as an ensemble solution to measure training (n = 106) and validation (n = 26) performance, independently. The time needed by the model to automatically segment 20 cases was compared to the time required for manual segmentation. The median DSC for manual segmentation sets was 0.969 (±0.032 IQR). The median DSC for the automatic tool was 0.965 (±0.018 IQR). The automatic segmentation model achieved a better performance regarding the FPRm. MR images segmentation variability is similar between radiologists and nnU-Net. Time leverage when using the automatic model with posterior visual validation and manual adjustment corresponds to 92.8%.

4.
Eur Radiol Exp ; 6(1): 22, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35641659

RESUMO

BACKGROUND: Estimating the required sample size is crucial when developing and validating clinical prediction models. However, there is no consensus about how to determine the sample size in such a setting. Here, the goal was to compare available methods to define a practical solution to sample size estimation for clinical predictive models, as applied to Horizon 2020 PRIMAGE as a case study. METHODS: Three different methods (Riley's; "rule of thumb" with 10 and 5 events per predictor) were employed to calculate the sample size required to develop predictive models to analyse the variation in sample size as a function of different parameters. Subsequently, the sample size for model validation was also estimated. RESULTS: To develop reliable predictive models, 1397 neuroblastoma patients are required, 1060 high-risk neuroblastoma patients and 1345 diffuse intrinsic pontine glioma (DIPG) patients. This sample size can be lowered by reducing the number of variables included in the model, by including direct measures of the outcome to be predicted and/or by increasing the follow-up period. For model validation, the estimated sample size resulted to be 326 patients for neuroblastoma, 246 for high-risk neuroblastoma, and 592 for DIPG. CONCLUSIONS: Given the variability of the different sample sizes obtained, we recommend using methods based on epidemiological data and the nature of the results, as the results are tailored to the specific clinical problem. In addition, sample size can be reduced by lowering the number of parameter predictors, by including direct measures of the outcome of interest.


Assuntos
Modelos Estatísticos , Neuroblastoma , Humanos , Neuroblastoma/diagnóstico por imagem , Prognóstico , Tamanho da Amostra
7.
J Digit Imaging ; 34(5): 1134-1145, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34505958

RESUMO

Several noise sources, such as the Johnson-Nyquist noise, affect MR images disturbing the visualization of structures and affecting the subsequent extraction of radiomic data. We evaluate the performance of 5 denoising filters (anisotropic diffusion filter (ADF), curvature flow filter (CFF), Gaussian filter (GF), non-local means filter (NLMF), and unbiased non-local means (UNLMF)), with 33 different settings, in T2-weighted MR images of phantoms (N = 112) and neuroblastoma patients (N = 25). Filters were discarded until the most optimal solutions were obtained according to 3 image quality metrics: peak signal-to-noise ratio (PSNR), edge-strength similarity-based image quality metric (ESSIM), and noise (standard deviation of the signal intensity of a region in the background area). The selected filters were ADFs and UNLMs. From them, 107 radiomics features preservation at 4 progressively added noise levels were studied. The ADF with a conductance of 1 and 2 iterations standardized the radiomic features, improving reproducibility and quality metrics.


Assuntos
Algoritmos , Diagnóstico por Imagem , Biomarcadores , Humanos , Reprodutibilidade dos Testes , Razão Sinal-Ruído
11.
Cancers (Basel) ; 12(12)2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371218

RESUMO

BACKGROUND/AIM: In recent years, the apparent diffusion coefficient (ADC) has been used in many oncology applications as a surrogate marker of tumor cellularity and aggressiveness, although several factors may introduce bias when calculating this coefficient. The goal of this study was to develop a novel methodology (Fit-Cluster-Fit) based on confidence habitats that could be applied to quantitative diffusion-weighted magnetic resonance images (DWIs) to enhance the power of ADC values to discriminate between benign and malignant neuroblastic tumor profiles in children. METHODS: Histogram analysis and clustering-based algorithms were applied to DWIs from 33 patients to perform tumor voxel discrimination into two classes. Voxel uncertainties were quantified and incorporated to obtain a more reproducible and meaningful estimate of ADC values within a tumor habitat. Computational experiments were performed by smearing the ADC values in order to obtain confidence maps that help identify and remove noise from low-quality voxels within high-signal clustered regions. The proposed Fit-Cluster-Fit methodology was compared with two other methods: conventional voxel-based and a cluster-based strategy. RESULTS: The cluster-based and Fit-Cluster-Fit models successfully differentiated benign and malignant neuroblastic tumor profiles when using values from the lower ADC habitat. In particular, the best sensitivity (91%) and specificity (89%) of all the combinations and methods explored was achieved by removing uncertainties at a 70% confidence threshold, improving standard voxel-based sensitivity and negative predictive values by 4% and 10%, respectively. CONCLUSIONS: The Fit-Cluster-Fit method improves the performance of imaging biomarkers in classifying pediatric solid tumor cancers and it can probably be adapted to dynamic signal evaluation for any tumor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...